Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 79(7): 2065-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21538543

RESUMO

The hypermodified nucleoside N(6)-threonylcarbamoyladenosine resides at position 37 of tRNA molecules bearing U at position 36 and maintains translational fidelity in the three kingdoms of life. The N(6)-threonylcarbamoyl moiety is composed of L-threonine and bicarbonate, and its synthesis was genetically shown to require YrdC/Sua5. YrdC/Sua5 binds to tRNA and ATP. In this study, we analyzed the L-threonine-binding mode of Sua5 from the archaeon Sulfolobus tokodaii. Isothermal titration calorimetry measurements revealed that S. tokodaii Sua5 binds L-threonine more strongly than L-serine and glycine. The Kd values of Sua5 for L-threonine and L-serine are 9.3 µM and 2.6 mM, respectively. We determined the crystal structure of S. tokodaii Sua5, complexed with AMPPNP and L-threonine, at 1.8 Å resolution. The L-threonine is bound next to AMPPNP in the same pocket of the N-terminal domain. Thr118 and two water molecules form hydrogen bonds with AMPPNP in a unique manner for adenine-specific recognition. The carboxyl group and the side-chain hydroxyl and methyl groups of L-threonine are buried deep in the pocket, whereas the amino group faces AMPPNP. The L-threonine is located in a suitable position to react together with ATP for the synthesis of N(6)-threonylcarbamoyladenosine.


Assuntos
Adenilil Imidodifosfato/química , Proteínas Arqueais/química , Proteínas de Ligação a RNA/química , Sulfolobus/química , Treonina/química , Adenilil Imidodifosfato/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Calorimetria , Anotação de Sequência Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Treonina/metabolismo , Difração de Raios X
2.
J Mol Biol ; 383(4): 871-84, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18789948

RESUMO

Trm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-l-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethylated tRNA*Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family.


Assuntos
Estrutura Terciária de Proteína , Pyrococcus horikoshii/enzimologia , tRNA Metiltransferases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/metabolismo , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , tRNA Metiltransferases/genética
3.
Structure ; 15(12): 1642-53, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18073113

RESUMO

In the bacterial genetic-code system, the codon AUA is decoded as isoleucine by tRNA(Ile)(2) with the lysidine residue at the wobble position. Lysidine is derived from cytidine, with ATP and L-lysine, by tRNA(Ile) lysidine synthetase (TilS), which is an N-type ATP pyrophosphatase. In this study, we determined the crystal structure of Aquifex aeolicus TilS, complexed with ATP, Mg2+, and L-lysine, at 2.5 A resolution. The presence of the TilS-specific subdomain causes the active site to have two separate gateways, a large hole and a narrow tunnel on the opposite side. ATP is bound inside the hole, and L-lysine is bound at the entrance of the tunnel. The conserved Asp36 in the PP-motif coordinates Mg2+. In these initial binding modes, the ATP, Mg2+, and L-lysine are held far apart from each other, but they seem to be brought together for the reaction upon cytidine binding, with putative structural changes of the complex.


Assuntos
Trifosfato de Adenosina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Lisina/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
4.
Proc Natl Acad Sci U S A ; 104(20): 8293-8, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17488812

RESUMO

tmRNA and small protein B (SmpB) are essential trans-translation system components. In the present study, we determined the crystal structure of SmpB in complex with the entire tRNA domain of the tmRNA from Thermus thermophilus. Overall, the ribonucleoprotein complex (tRNP) mimics a long-variable-arm tRNA (class II tRNA) in the canonical L-shaped tertiary structure. The tmRNA terminus corresponds to the acceptor and T arms, or the upper part, of tRNA. On the other hand, the SmpB protein simulates the lower part, the anticodon and D stems, of tRNA. Intriguingly, several amino acid residues collaborate with tmRNA bases to reproduce the canonical tRNA core layers. The linker helix of tmRNA had been considered to correspond to the anticodon stem, but the complex structure unambiguously shows that it corresponds to the tRNA variable arm. The tmRNA linker helix, as well as the long variable arm of class II tRNA, may occupy the gap between the large and small ribosomal subunits. This suggested how the tRNA domain is connected to the mRNA domain entering the mRNA channel. A loop of SmpB in the tRNP is likely to participate in the interaction with alanyl-tRNA synthetase, which may be the mechanism for the promotion of tmRNA alanylation by the SmpB protein. Therefore, the tRNP may simulate a tRNA, both structurally and functionally, with respect to aminoacylation and ribosome entry.


Assuntos
Mimetismo Molecular , RNA Bacteriano/química , RNA de Transferência/química , Thermus thermophilus/metabolismo , Alanina/metabolismo , Aminoacilação , Sequência de Bases , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Relação Estrutura-Atividade
5.
FEBS J ; 272(10): 2487-96, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15885098

RESUMO

Group I introns are thought to be self-propagating mobile elements, and are distributed over a wide range of organisms through horizontal transmission. Intron invasion is initiated through cleavage of a target DNA by a homing endonuclease encoded in an open reading frame (ORF) found within the intron. The intron is likely of no benefit to the host cell and is not maintained over time, leading to the accumulation of mutations after intron invasion. Therefore, regular invasional transmission of the intron to a new species at least once before its degeneration is likely essential for its evolutionary long-term existence. In many cases, the target is in a protein-coding region which is well conserved among organisms, but contains ambiguity at the third nucleotide position of the codon. Consequently, the homing endonuclease might be adapted to overcome sequence polymorphisms at the target site. To address whether codon degeneracy affects horizontal transmission, we investigated the recognition properties of a homing enzyme, I-CsmI, that is encoded in the intronic ORF of a group I intron located in the mitochondrial COB gene of the unicellular green alga Chlamydomonas smithii. We successfully expressed and purified three types of N-terminally truncated I-CsmI polypeptides, and assayed the efficiency of cleavage for 81 substrates containing single nucleotide substitutions. We found a slight but significant tendency that I-CsmI cleaves substrates containing a silent or tolerated amino acid change more efficiently than nonsilent or nontolerated ones. The published recognition properties of I-SpomI, I-ScaI, and I-SceII were reconsidered from this point of view, and we detected proficient adaptation of I-SpomI, I-ScaI, and I-SceII for target site sequence degeneracy. Based on the results described above, we propose that intronic homing enzymes are adapted to cleave sequences that might appear at the target region in various species, however, such adaptation becomes less prominent in proportion to the time elapsed after intron invasion into a new host.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas/enzimologia , Chlamydomonas/genética , Endodesoxirribonucleases/metabolismo , Transferência Genética Horizontal , Íntrons , Proteínas de Algas/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Códon , Análise Mutacional de DNA , Endodesoxirribonucleases/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fases de Leitura Aberta
6.
Mol Cell Biol ; 22(24): 8438-47, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446764

RESUMO

Fragile X syndrome is caused by loss of FMR1 protein expression. FMR1 binds RNA and associates with polysomes in the cytoplasm; thus, it has been proposed to function as a regulator of gene expression at the posttranscriptional level. Posttranslational modification of FMR1 had previously been suggested to regulate its activity, but no experimental support for this model has been reported to date. Here we report that FMR1 in Drosophila melanogaster (dFMR1) is phosphorylated in vivo and that the homomer formation and the RNA-binding activities of dFMR1 are modulated by phosphorylation in vitro. Identification of a protein phosphorylating dFMR1 showed it to be Drosophila casein kinase II (dCKII). dCKII directly interacts with and phosphorylates dFMR1 in vitro. The phosphorylation site in dFMR1 was identified as Ser406, which is highly conserved among FMR1 family members from several species. Using mass spectrometry, we established that Ser406 of dFMR1 is indeed phosphorylated in vivo. Furthermore, human FMR1 (hFMR1) is also phosphorylated in vivo, and alteration of the conserved Ser500 in hFMR1 abolishes phosphorylation by CKII in vitro. These studies support the model that the biological functions of FMR1, such as regulation of gene expression, are likely regulated by its phosphorylation.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Caseína Quinase II , Fracionamento Celular , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/fisiologia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Deficiência Intelectual , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Subunidades Proteicas , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...